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ABSTRACT: Manual and uneven distribution of hydro-meteorological stations, offline data, high cost of modeling 

software and state-owned stations’ data, lack of trust in technology, and lack of expert knowledge, are the barriers that 

exist in most developing countries, which evade inclusion of hydrological modeling approaches for water resources 

management. As a solution for this, an open sensor network has been deployed in the Deduru Oya river basin of Sri 

Lanka to utilize open big data in the effective management of water resources. In absence of pre-determined 

parameter values for the river basin, the sub-catchment level parameter values for both wet and dry periods and daily 

and hourly time-steps have been estimated through inverse modeling approach, by way of fitting model simulations to 

observations. The model has been customized to utilize the estimated data of the weather generator to prevent the 

underutilization of open data in the stage of model stabilization. 

 

1.  INTRODUCTION 

 

Hydrologic models represent parts of the hydrological cycle such as precipitation, evapotranspiration, infiltration, 
surface runoff, routing, and interflow/sub-surface flow, quantitatively. These quantitative measurements can be 
expressed in a water balance equation as variables. The equation expresses the balance between the water input and 
water output. Precipitation is the main source of water input that falls from the atmosphere as rain, snow, freezing rain, 
sleet, and hail. Evapotranspiration and surface runoff are the other processes associated with water output. The 
infiltration process represents the net loss of water which store as groundwater. In most hydrological models, the 
above hydrological processes are simulated by applying the input data such as rainfall, temperature, solar radiation, 
wind speed, relative humidity, and river discharge. Hydro-meteorological networks and satellite-based sensors are the 
key sources of providing these input data to run the hydrological model. However, most developing countries lack 
sufficient weather observing stations that provide continuous and near-real-time data for decision-making. As 
identified by Snow (2013), the commonly found challenges for a developing nation to maintain their weather network 
are inadequate funds, lack of locally available expertise knowledge, infrastructure and spare parts, and corrosion of 
electronic components. 
Hence, during an emergency weather condition, getting a series of high temporal and spatial resolution dataset for 
modeling purposes becomes an issue. Thanks to the 4ONSE project (4 times Open and Non-Conventional 
technologies for Sensing the Environment), which was a joint research project between the University of Moratuwa, 
Sri Lanka, and the University of Applied Sciences and Arts of Southern Switzerland, an experimental sensor network 
has been deployed in Sri Lanka. This sensor network is comprised of 4 open-source components: hardware, software, 
standards, and data. The network was built on Arduino Mega 2560 open hardware platform. The communication part 
has been controlled by istSOS (Istituto Scienze Della Terra Sensor Observation Service) open-source software, which 
manages and dispatches observations of the stations as per the OGC-SOS (Open Geospatial Consortium-Sensor 
Observation Service) standard, in an interoperable way. The accuracy of the 4ONSE data has been checked with some 
reference stations’ data in Sri Lanka and Switzerland before the application of those data in hydrological modeling 
(Sudantha, et.al, 2019; Strigaro, et.al, 2019). During the process of accuracy testing, the coefficient of determination 
was received as greater than 0.7 for all the main parameters at 10 minutes and daily time intervals.  
All mathematical models in hydrology, which expresses as a function of time can be classified into several pairs as 
time-variant and time-invariant, stochastic and deterministic and, event-based and continuous. In time-invariant 
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models, hydrological parameters are assumed as unchanging with time. Correspondingly, the deterministic models 
consider the same set of parameter values most of the time to simulate the outputs. However, in reality, hydrological 
parameters do not exist in constant form. Rather, they show temporal variation due to the changes in the climatic and 
geomorphological patterns. As any model parameter inherits stochasticity due to random changes in the 
environmental condition, the time-invariant and deterministic modeling approaches have now been considered 
obsolete. On contrary, stochastic models and time-variant models allow to incorporate parameter values as a range for 
different time scales. As stated by Abbaspour, et.al, (2018), “A stochastic model can be defined as a model that takes 
parameters in the form of a distribution and produces output variables in the form of a distribution”. The third pair of 
event-based and continuous models can be distinguished based on the length of the simulation period. Event-based 
models usually consider single rainfall events with discrete rainfall pulses and require initial river discharge value to 
incorporate into the model. Conversely, continuous hydrological models necessitate a warm-up period to decide the 
initial condition of the catchment. A warm-up period is a mandatory option provided in some hydrological modeling 
tools such as SWAT (Soil and Water Assessment Tool), HYMOD  (Hydrological MODel), IHACRES  (Identification 
of unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow data), HBV-D  
(Hydrologiska Byråns Vattenbalansavdelning-D) and SWIM  (Soil and Water Integrated Model). Berthet, et.al (2009) 
have identified warm-up period has a significant impact on the stability and convergence of the model. Depending on 
the saturation level of the soil, the warm-up period may range from one to several years. A lesser warm-up period is 
required in wetter periods, while a greater warm-up period is required in drier periods. However, the required time 
varies with land use, climatic condition, and the size of the basin.  
Optimization of hydrological parameters which is also known as “parameterization”, involves the identification of 
dominant parameters and their sensitive ranges of different spatial and temporal scales. Here, the temporal scale 
denotes the time-scale of the simulation – yearly, monthly, daily, hourly, sub-hourly, while the spatial scale denotes 
the spatial units of the model – catchments, sub-catchments, hydrological response units (HRU) with similar land uses, 
soil types and slopes. As the parameters which govern the hydrological processes differ with the geomorphological 
setup and the climatic condition of the watershed, their level of uncertainty is high. Hence, parameterization is the 
most cumbersome part of any hydrological modeling approach. Generally, the dominant parameters and their values 
are determined based on the previous field investigations and research conducted within and around the particular 
watershed area. Nevertheless, direct measurement of these parameters is cumbersome, time-consuming, 
labor-intensive, and expensive most of the time. Therefore, the most convenient way is to indirectly identify the 
dominant/sensitive parameters and estimating their values through model calibration, by way of fitting model 
simulations to observations (Zhang, et.al, 2014). This inverse modeling approach is more appropriate for hydrological 
models which operate as continuous models with long-term runs. As 4ONSE is a newly deployed network, it doesn’t 
have adequate data for at least 2 years warm-up period. Hence, the objective of this research is to present an approach 
for optimizing the hydrological model parameters of a river basin where a new open sensor network exists, under the 
constraint of limited data available for the model warm-up period. The parameters were optimized at the 
sub-catchment scale for both daily and hourly intervals for both dry and wet periods. SWAT, SWAT weather 
generator, and SWAT-CUP (SWAT Calibration and Uncertainty Procedures) open-source tools have been used to 
develop the hydrological model, estimate the missing weather data of the warm-up period and optimize the model 
parameters respectively. 

 

2.  MATERIAL AND METHODS 

 

2.1 The study area 

 

The 4ONSE open sensor network has been deployed at Deduru Oya basin, which is the 4th largest river basin of Sri 

Lanka. The extent of the catchment is approximately 2687km2 and there are 8 major reservoirs in the basin. Deduru 

Oya reservoir is the largest reservoir in the basin which is 75,000,000m3 incapacity. It is located at the center of the 

basin and receives water from four streams (Deduru Oya, Kimbulwana Oya, Hakwatuna Oya, and Maguru Oya) 

which start from the central highlands. Accordingly, the upper watershed of the Deduru Oya basin can be further 

divided into four sub-catchments based on the four streams (Figure 1). Under the project, 27 weather stations and 6 

river gauges have been deployed in the Deduru Oya river basin of Sri Lanka (Figure 2). As the hydrological 

parameters vary with rainfall pattern, the weather stations were deployed closer to the sub-basin’s centroid at areas of 

high rainfall entropy values (Warusavitharana, et.al, 2018; Warusavitharana, 2020). 
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Figure 1: Upper sub-catchments of Deduru Oya watershed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: 4ONSE deployment at Deduru Oya basin 

 

2.2 Application of open-source tools and data 

 

The hydrological model required to optimize the model parameters has been developed in an open-source 

environment. The model development and parameterization have been primarily performed using the SWAT (Soil 

and Water Assessment Tool) hydrological modeling tool and its associated plugins and programs. Table 1 shows the 

different open-source tools used in this study and their applications. The details about the input data used in the model 
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and their applications are given in Table 2. 

 

Table 1: Open-source tools used in this study 

Tool Application 

QGIS Brighton  To process the vector and raster input data 

 The selected GIS interface to run the QSWAT plugin  

QSWAT  The plugin used in the QGIS software to run the SWAT model 

SWAT Editor  To read the project databases 

 To generate the missing weather data 

 To execute the SWAT run 

SWAT-CUP  To optimize the model parameters 

 To calibrate the model 

 To validate the model 

istSOS  To view and download the 4ONSE data 

 

Table 2: Input data used in the SWAT model 

No Input Data Source & link  Resolution Purpose 

01 Digital Elevation 
Model (DEM) 

Shuttle Radar Topography 
Mission (SRTM) 
 
https://earthexplorer.usgs.gov/  

1 arc second 
(approximately 
30m) To delineate the 

watershed and 
sub-basins 
boundaries 

02 Stream Network Produced by the Author 1:10,000 

03 Land use Survey Department of Sri Lanka 1:50,000 
To generate the 
Hydrological 
Response Units 
(HRUs)  

04 Soil FAO-UNESCO 
http://www.fao.org/geonetwork/s
rv/en/metadata.show?id=14116  

1:5,000,000 

05 Historical weather 
data 

Climate Forecast System 
Reanalysis (CFSR) 
https://globalweather.tamu.edu/  

0.5 degree 
(approximately 
55km) gridded 
dataset for the 
period of 1993 to 
2013 

To calculate the 
statistics to use in the 
SWAT’s weather 
generator 

06 Daily and hourly 
weather data 

4ONSE weather stations 
https://geoservice.ist.supsi.ch/4o
nse/admin/ 

Sub-basin level To run the model 

07 Daily and hourly 
stream water levels 

4ONSE river gauges 
https://geoservice.ist.supsi.ch/4o
nse/admin/ 
 
Irrigation Department 

- To calibrate the 
model 

 

DEM and the digitized stream network were used to delineate the Deduru Oya catchment and sub-basin boundaries, 

based on 1% of the threshold. The threshold value denotes the percentage of cells in the DEM, need to form a stream. 

During the processes of watershed delineation, 22 sub-basins were received. However, considering the convenience 

of calibrating the model, the sub-basins of the upper catchment were grouped under four sub-catchments, based on the 

four streams of the upper catchment (Figure1). Land-use and soil layers were used to generate the HRUs. HRU is the 

smallest spatial unit in the model to compute the runoff. 4ONSE weather stations’ data were applied to run the model. 

Rainfall, maximum and minimum temperature, solar radiation, relative humidity, and wind speed are the weather data 

need to run the model. SWAT’s algorithms for infiltration, surface runoff, flow routing, impoundments, and lagging 

of surface runoff have been modified to allow flow simulations with a sub-daily time interval as small as one minute 

and, evapotranspiration, soil water contents, base flow, and lateral flow are estimated daily and distributed equally for 

each time step (Jeong, et.al, 2010). Therefore, when running the model at a sub-daily time interval, the precipitation 

data need to upload into the model at the sub-daily time step and all the other input data (maximum and minimum 

https://earthexplorer.usgs.gov/
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
https://globalweather.tamu.edu/
https://geoservice.ist.supsi.ch/4onse/admin/
https://geoservice.ist.supsi.ch/4onse/admin/
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temperature, relative humidity, solar radiation, and wind speed) at a daily time step. The 4ONSE water level data were 

used to calibrate the model using SWAT-CUP standalone program. Before that, water level data were converted to 

discharge, based on Irrigation Department’s stage-discharge relationship equations.  

 

Since SWAT is a continuous model, the SUFI-2 (Sequential Uncertainties Fitting Version 2) inverse modeling 

approach has been applied to optimize the model parameters. Two years of the warm-up period have been assigned to 

stabilize the soil moisture condition. The 4ONSE is a newly deployed sensor network, in which the installation 

activities were completed in May 2019. Hence, the required data of the 2 years warm-up period were generated from 

SWAT’s weather generator in SWAT editor. The model was customized to estimate the data during the warm-up 

period using the SWAT’s weather generator. The relevant monthly weather statistics on rainfall, temperature, relative 

humidity, solar radiation, and wind speed, which are required to operate the weather generator have been calculated 

based on the historical gridded weather data of NCEP ’s (National Centers for Environmental Prediction) CFSR  

(Climate Forecast System Reanalysis) database.  

 

2.3 Simulation of hydrological processes in SWAT 

 

In this study, hydrological processes were simulated at both daily and hourly time intervals. Penman-Monteith, 

Priestley-Taylor, and Hargreaves are the three options available in SWAT to compute the potential evapotranspiration 

(PET ). Compared to the Priestly-Taylor method and Hargreaves method, in the Penman-Monteith method, four types 

of input weather data (air temperature, relative humidity, solar radiation, and wind speed) are used to estimate the 

PET. SWAT includes two methods to calculate the retention parameter in SCS  (Soil Conservation Service) curve 

number method: soil moisture method and plant ET  (evapotranspiration) method. A previous study conducted for the 

Deduru Oya basin has revealed that the soil moisture method is more capable of calculating the retention parameter of 

the Deduru Oya basin, as it is more dependent on soil storage (Warusavitharana, 2020).  

SWAT provides two methods for estimating surface runoff: the SCS curve number (CN) method (SCS, 1972) and the 

Green and Ampt Mein Larson (GAML) excess rainfall method (Mein and Larson, 1973). CN method is an empirical 

model, which is based on the basic rainfall-runoff relationships of different land uses and soil types in a small rural 

watershed of the United States. GAML method is a physically-based model, which considers the direct relationship 

between infiltration and rainfall based on physical parameters allowing continuous surface runoff simulation (Jeong, 

et.al, 2010). Garen and Moore (2005) revealed, CN method is not suitable for simulating the continuous surface 

runoff at the sub-hourly interval, since it estimates the direct runoff using empirical relationships between the total 

rainfall and watershed properties. King et al. (1999) also suggest GAML is more appropriate for sub-hourly 

simulation than the CN method, due to its less bias over model prediction. Further, several studies (Wang & Yang, 

2019; Yu, et.al, 2018; Bauwe, et.al, 2017; Boithias, 2017; Shannak, 2017; Yang, et.al, 2016) have revealed the better 

performance of GAML in simulating the peak flows during flashy storms. Hence, the GAML method has been chosen 

for sub-hourly surface runoff simulation. To simulate the runoff, the Muskingham method was applied as the stream 

network of the Deduru Oya basin follows a meandering pattern. 

 

3.2 Parameter optimization 

 

Parameter optimization or parameterization is a process of adjusting the model parameters to minimize the difference 

between simulated results and observation. As per the parameterization scheme in SWAT-CUP, three changes can be 

applied to the model parameters: 

1) Type V - replacing the existing parameter value  

2) Type A - given value is added to the existing parameter value  

3) Type R - existing parameter value multiplied by (1+ given value) 

SWAT_CUP usually recommends applying the type R for spatial parameters (parameters related to land use and soil 

properties). In addition, considering the convenience of examining more parameter space (value range), type R has 

been applied to parameters with a large range. For all the other parameters, type V has been applied.  

SWAT model has more than 50 parameters and not all of them are useful in developing the hydrological model. 

Therefore, identification of dominant/sensitive parameters and their values are important to identify, before 

calibrating the model. SWAT-CUP program has two methods to identify the dominant/sensitive parameters: (1) 

One-at-a-time (OAT ) local sensitivity analysis (2) All-at-a-time (AAT ) global sensitivity analysis. OAT shows the 

sensitivity of a selected parameter if all the other parameters are kept constant at some value, while AAT shows the 

sensitivity of each parameter while allowing all other parameters to change. AAT produces sensitive parameters at the 

end of the analysis after performing a large number of runs with a statistically acceptable result. However, this study 
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intends to identify the sensitive parameters, before running the model. Hence, OAT analysis has been performed to 

identify the sensitive parameters. However, the limitation of OAT is that the sensitivity of one parameter is more often 

dependent on the values of other parameters and the parameter values which need to fix at the beginning are unknown 

(Abbaspour, et.al, 2018). The other limitation is, OAT requires considerable time to decide whether a parameter is 

sensitive or not, by specifying different parameter ranges. For example, suppose the range of a parameter is 0 – 20. 

The parameter might be sensitive for the 0 – 1 range, although it is insensitive for the entire 0 - 20 range. Therefore, 

considerable time was taken in this study to identify the sensitive parameters and their suitable parameter ranges 

through OAT analysis. 

SWAT-CUP contains several methods to calibrate and uncertainty analysis of SWAT models. They are: 

1) SUFI-2 (Abbaspour et.al, 2015) 

2) GLUE (Beven and Binley, 1992) 

3) ParaSol (Van Griensven and Meixner, 2006) 

4) MCMC (Kuczera and Parent, 1998) 

5) PSO (Kennedy and Eberhart, 1995) 

In this study, the SUFI-2 (Sequential Uncertainties Fitting Version 2) algorithm was used to calibrate the model. 

SUFI-2 algorithm operates as an Inverse Modelling approach, in which the suitable parameter values are decided 

based on the observed streamflow/discharge. As it follows a stochastic modeling approach, a range of values is 

applied to parameters instead of single values. This algorithm suggests new parameter ranges at the end of each 

iteration. The suggested new parameter ranges are used to perform another iteration if the performance of the previous 

iteration is unsatisfactory. Accordingly, the selected sub-catchments have produced acceptable results (both visually 

and statistically) during the 4th iteration. Thus, the most suitable parameter ranges have been obtained at the 4th 

iteration. In this study, 500 runs were performed at each iteration. When performing more iterations, the parameter 

ranges become smaller and enlarge a better region of the parameter space (Abbaspour C., 2008).  

SWAT-CUP contains several objective functions to determine the fitness of the model statistically. In this study, the 

fitness of the model has been tested through the Nash-Sutcliffe Efficiency method (NSE) given in Equation 1. 

 

 Equation 1 

 

In addition, SWAT-CUP also measures the goodness of fit (R2), which ranges between 0 and 1 (Equation 2). This 

indicates the proportion of the variance in the measured data. The higher value indicates less error variance. Usually, 

R2 > 0.5 is considered as acceptable (Van Liew, et.al., 2003; Santhi, et.al., 2001). 

 

 Equation 2 

 

Where  is the number of observations in the period under consideration,  is the th observed value,  is the mean 

observed value,  is the th model-predicted value, and  is the mean model-predicted value.  

Further, in the SUFI-2 algorithm, the fitness between the simulated result and the observed values are expressed as 

95PPU – 95% prediction uncertainty. Each simulation produces two statistics: P-factor and R-factor. P-factor is the 

percentage of observed data simulated in the model. Hence, (1 – P factor) is the percentage of observed data not 

simulated well in the model, in other words “model error”. R-factor is the thickness of the 95PPU envelope. It is 

calculated as per Equation 3: 

 Equation 3 

 

Where  and  are the upper and lower boundary of the 95PPU at time step  and simulation . 

For model outputs related to discharge, SWAT-CUP recommends P-factor greater than 70%, while having an 

R-factor of around 1. It gives the P-factor and R-factor the best simulation. The subsequent section shows the results 

of the parameter optimization done for the largest sub-catchment of the basin, which is the Deduru Oya 

sub-catchment. Compared to the other three sub-catchments, the Deduru Oya reservoir receives the largest inflow 

from the Deduru Oya sub-catchment. 
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4.  RESULTS AND FINDINGS 

 

Initially, the performance of the hydrological model was tested at daily time step. The default parameter values in the 

SWAT model and the daily 4ONSE data were used for this initial run. However, due to the significance difference in 

the simulated flow and the observed flow, the model was regionalized first by examining the stream flow signatures. 

Then the parameters were optimized for the hourly time step. The stream flow simulated by the SWAT at daily and 

hourly time step by applying the optimized parameters relevant to particular time step are illustrated in Figure 3. The 

statistical results related to simulated results are given in Table 3. The model could not be further validated for daily 

time-step due to the unavailability of continuous dataset after the month of October. As per the statistical results given 

in Table 3, the performance of the model in simulating the hydrological processes at daily and hourly time steps is 

satisfactory. The Davis rain gauge used in the 4ONSE weather stations usually have an error percentage of ±4% for 

rain rates up to 50mm/hour and ±5% for rain rates within the range of 50mm/hr to 100mm/hr. This is the main 

causative factor for why some of the peaks was unable to reach to its level. 

 

Figure 3: Simulated results of the hydrological model, after application of 4ONSE data 

 
Table 3: Statistical results related to daily and hourly simulation 

Period Daily / Hourly P factor R factor R
2
 NSE 

1st August to 6th October 2019 Daily 0.87 0.98 0.69 0.69 

1st to 15th June 2019 Hourly 0.96 0.76 0.76 0.75 

15th to 30th June 2019 Hourly 0.96 0.89 0.89 0.88 

4th to 9th August 2019 Hourly 1.0 0.53 0.77 0.55 

1st to 15th August 2019 Hourly 0.74 0.54 0.67 0.63 

16th to 23rd August 2019 Hourly 0.83 0.00 0.67 0.43 

The sensitive parameters at both daily and hourly time-steps have been showed in Table 4 and 5 respectively.  
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Table 4: Sensitive parameters and their ranges at daily time step 

 

 

 

 

 

 

 

 

 

Table 5: Sensitive parameters and their ranges at hourly time step 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several parameters such as SOL_AWC (available water capacity of the soil layer), ESCO (soil evapotranspiration 

compensation factor), GW_DELAY (ground water delay time) and SURLAG (surface runoff lag coefficient) 

parameters have shown sensitivity only for hourly simulation. As the time narrows down to hours, the contribution of 

SOL_AWC, ESCO and GW_DELAY parameters have become insignificant and the SURLAG parameter, which 

characterizes the time of concentration at HRU level, has become significant in simulating the hourly flows. In SWAT 

database, the default value of SURLAG parameter is 4.0. The model recommends that the actual range of SURLAG 

varies within 0 – 1, which denotes more water is held in storage. SOL_AWC is a soil parameter which expresses the 

available water capacity of the soil layer for plants. This parameter has shown more sensitivity during daily time step 

due to the reasons of low clay content, greater depth of wetting and high rate of evapotranspiration in the basin area. 

ESCO parameter represents the soil evaporation compensation factor. As the SWAT’s algorithms for 

Parameter Description Optimum range 

GWQMN Threshold depth of water in the shallow aquifer required for return 
flow to occur 

0.96 – 1.38 

CN2 Initial SCS runoff curve number for moisture condition II) (-0.14) – (-0.03) 

CH_N2 Manning’s “n” value for main channel 0.07 – 0.11 

CH_N1 Manning’s “n” value for the tributary channels 0.49 – 0.74 

ALPHA_BNK Baseflow alpha factor for bank strorage (days) (-0.02) – 0.31 

CH_K2 Effective hydraulic conductivity in main channel alluvium 25.57 – 39.70 

ESCO Soil evapotranspiration compensation factor 0.41 – 0.64 

Parameter Description Optimum range 

CN2 Initial SCS runoff curve number for moisture condition II) (-0.3) – 0.1 

SOL_BD Moist bulk density 
(-0.08) – 1.77 

MSK_X Weighting factor for wedge storage 0 – 0.1 

MSK_CO2 Muskingum coefficient for low flow 0 – 8.1 

MSK_CO1 Muskingum coefficient for normal flow 1.0 – 5.2 

ALPHA_BF Baseflow alpha factor 0 – 0.2 

SOL_K Saturated hydraulic conductivity (-0.47) – (-0.04) 

SURLAG Surface runoff lag coefficient (-0.5) – 1.0 

CH_K2 Effective hydraulic conductivity in main channel alluvium 1.1 – 27.3 

CH_N1 Manning’s “n” value for the tributary channels (-0.3) – 0.7 

CH_N2 Manning’s “n” value for main channel 0 – 0.7 

GW_REVAP Groundwater “revap” coefficient 0.1 – 0.2 

GWQMN Threshold depth of water in the shallow aquifer required for return 

flow to occur 

0.8 – 2.0 
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evapotranspiration is estimated on daily basis and distributed equally for sub-daily time step, the sensitivity of ESCO 

parameter can be seen only during daily time step. The default value of ESCO in SWAT database is about 0.95. 

However, the optimization results suggest the value of ESCO could be lower than 0.95, which implies the possibilities 

of extracting more of the evaporative demand from lower levels. GW_DELAY is the next parameter which shows 

sensitivity only at daily time step. It represents the groundwater delay time which is the time taken to travel from 

bottom of the soil profile to shallow aquifer through vadose zone after the rainfall. Usually GW_DELAY expresses in 

days due to the slow movement of water. Accordingly, during the parameter optimization, SUFI2 algorithm in the 

SWAT-CUP program produced a range of parameter values, instead of single values. Owing to heterogeneity of 

parameters, the same set of parameters cannot be used continuously to produce the simulations. Hydrological 

parameters often cause for changes as a result of changes in the climatic and geographic processes.  

 

5.  CONCLUSION 

The main objective of this study is to demonstrate the potential of the fully open-source framework in optimizing the 

parameters at river basin scale. Five types of open-source tools (QGIS Brighton version, QSWAT, SWAT Editor, 

SWAT-CUP, istSOS) have been used to develop the hydrological model. The input data of the model has been 

obtained from 4ONSE open-source network, which has been built from three open-source technologies (Open 

hardware – Arduino, Open software – istSOS, Open standards – OGS-SOS). The hydrological model presented in this 

research follows the stochastic modelling approach during the model parameterization. Therefore, the same set of 

parameters cannot be applied for the model for every occasion. Estimation of variation of parameter values with 

reference to different time periods (i.e. rainfall seasons, months) is tiresome, time consuming and labor and capital 

intensive. However, the approach presented in this research avoids the necessity of pre-determined parameter values 

and allows users to determine them at any time. As the deterministic modelling approach has now been considered as 

outdated, the stochastic hydrological modelling approach presented in this research can be used to estimate the 

parameter values suitable for different time periods or different rainfall intensities. Over the last few decades, 

different researchers, practitioners and hobbyists have developed open hardware and software-based stations for 

environmental monitoring. However, application of combined open-source platforms to collect, store, sort, process 

and analyze data to support hydrological modelling at river basin scale have not been found in the literature as yet. 

Therefore, this is the initial study which was utilized combined open-source technologies, for parameter optimization 

at river basin scale. 
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